Harvard University

Estimating US methane emissions using GOSAT observations

Alexander J. Turner^{1,*}

¹Jacob Group, Harvard University, Cambridge, MA, USA.

*aturner@fas.harvard.edu

Why do we care about atmospheric methane?

- 1) Methane is a potent greenhouse gas
 - ▶ 2nd only to CO₂

Emissions based radiative forcing [W m⁻²]

O.O O.S 1.O 1.5

CO₂

CH₄

O₃

IPCC (2013) H₂O (strat)

2) Recent trends in atmospheric methane are not well understood

Global methane emission sources

Biogenic Thermogenic

Pyrogenic

Methods of estimating methane emissions

Satellites provide dense spatial coverage but have large uncertainties

Retrievals of methane from observed radiances

Satellites Observing Methane

Prior emissions from EDGARv4.2 + LPJ + GFED3

Major Sources (Tg yr⁻¹)

Total: 537 Tg yr⁻¹

Turner *et al.* (2015)

Model compares well with observations

Model compares well with observations

- Latitudinal gradient and seasonal cycle are represented
 - ► Compared to HIPPO, NOAA/ESRL, and TCCON
- Captures surface, free trop, and total column background

Identifying a GOSAT/GEOS-Chem bias

- Model/satellite comparison identifies a high-latitude bias
 - Latitudinal bias not seen in surface, aircraft, or column comparison
- ▶ Remove bias before estimating methane emissions
 - Bias is either due to the model stratosphere or GOSAT retrievals

Observations are ready for inversion!

General inversion framework: 2009–2011 GOSAT data

Global inversion provides dynamic BCs for North America

Global inversion results

- Overestimate of Chinese methane emissions
 - Consistent with previous work (e.g., Bergamaschi et al. 2013, Bruhwiler et al. 2014, Schwietzke et al. 2014)

- Underestimate in South-Central US emissions
 - Will further investigate using Nested North American simulation

Estimating methane emissions at high resolution

Adjoint is not ideal for long time horizons at hi-res

Simulation Walltime: 2.6 years

Estimating methane emissions at high resolution

Spatial error correlations are important at fine spatial scales!

Optimal size must balance aggregation and smoothing error

Radial Basis Functions retain high resolution

- Decompose the state vector into Gaussians
 - Group based on correlated prior emission patterns

- Retain high resolution
 - Coarsen weak or uniform signals

Turner and Jacob (2015)

Prior methane emissions from EDGARv4.2 + LPJ

Total: 63/537 Tg a⁻¹

North America Global

Constraining North American methane sources

(unitless)

0.01

Turner *et al.* (2015)

Does this posterior inventory improve things?

- Consistent emission estimates with regional and local studies
 - Improves comparison with independent observations!

US methane emissions and source attribution

- ▶ US emissions are a factor of 1.5 larger than the US EPA
- Livestock + Oil/Gas are the largest underestimated sources
- Attribution is sensitive to assumption about the prior error

US methane emissions and source attribution

- ▶ Partitioning between oil/gas and livestock is dependent on specification of prior error
 - Prior error like Wecht et al. (2014a) yields more livestock emissions
 - Prior error like CLT (more similar to Miller et al.) yields balance between oil/gas and livestock

Development of a gridded EPA methane inventory

Improves potential of inversions to test and improve the EPA inventory

 $\mathrm{CH_4}\ \mathrm{emissions}\ (\mathrm{molec\ s^{-1}\ cm^{-2}})$

Maasakkers *et al.* (in prep)

Trend in US methane emissions?

▶ What about the difference in magnitude between Wecht et al., Miller et al., and Turner et al.?

Trend in US methane emissions?

Top-down studies point to an increase in US methane, not seen in bottom-up estimates

What data do we have to corroborate this trend?

- Surface observations from the NOAA/ESRL flask network
- Nadir-mode observations from the GOSAT satellite
- Glint-mode observations from the GOSAT satellite

Increasing difference in NOAA/DOE observations

Coincides with increase in US methane emissions seen by top-down studies

Use GOSAT for regional trend analysis

- Look at trends over locations where GOSAT samples
- Compare ocean glint to contiguous US observations

Increasing difference in GOSAT observations

GOSAT and NOAA background are consistent Contiguous US enhanced from background

Where do we find regional trends?

Increases are coincident with agriculture and oil/gas

Potential cause of the increase in US emissions

- ▶ 9-fold increase in US shale gas production from 2002–2014
- ▶ 125% increase in active drill rigs from 2002–2014

Potentially explained by oil/gas increases

Summary

- Space-borne observations can be used to estimate regional methane emissions
- US methane emissions have increased more than 30% in the past decade
 - Likely due to anthropogenic (oil/gas or agriculture) sources
- Could be a driver in the renewed methane growth

